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Abstract

We study a class of nonperturbative corrections to single-inclusive photon cross sections
at measured transverse momentum pT , in the large-xT limit. We develop an extension of
the joint (threshold and transverse momentum) resummation formalism, appropriate for
large xT , in which there are no kinematic singularities associated with recoil, and for which
matching to fixed order and to threshold resummation at next-to-leading logarithm (NLL)
is straightforward. Beyond NLL, we find contributions that can be attributed to recoil from
initial state radiation. Associated power corrections occur as inverse powers of p2

T and are
identified from the infrared structure of integrals over the running coupling. They have
significant energy dependence and decrease from typical fixed-target to collider energies.
Energy conservation, which is incorporated into joint resummation, moderates the effects
of perturbative recoil and power corrections for large xT .
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1 Introduction

To study the interplay of perturbative and nonperturbative dynamics in processes involving
hadronic states it is natural to begin with observables whose perturbative analysis is well un-
derstood. For certain observables, perturbation theory not only provides predictions at leading
power in a large momentum scale, but also characterizes power corrections in that scale. This can
come about, for example, through nonconvergent perturbative expansions that exhibit sensitivity
to the strong-coupling and/or vacuum structure of the theory [1].

Relying on perturbative resummations, this approach has had phenomenological successes in
the description of a variety of inclusive and semi-inclusive cross sections. These include average
and differential event shapes, primarily but not exclusively in e+e− annihilation [2-9], and elec-
troweak annihilation cross sections at measured transverse momentum [10-13]. The value of the
event shape or lepton pair transverse momentum provides a second scale in the cross section, and
varying this scale changes the relative importance of perturbative and nonperturbative dynamics.
Thus, the transition between perturbative and nonperturbative QCD is in principle available for
study in these observables.

In this paper, we adopt this general philosophy and employ the joint resummation [14, 15]
of threshold [16] and transverse momentum [12] enhancements to study power corrections in the
hard-scattering scale pT for single-particle inclusive (1PI) cross sections in the large x2

T = 4p2
T /S

region. Using direct photon production as an example, we will show that these corrections exhibit
significant xT dependence, which moderates both perturbative and nonperturbative recoil at large
xT compared to estimates based on transverse momentum resummation alone. These conclusions
are made possible by a simplification of the joint resummation formalism that is specific to the
xT → 1 limit.

Direct photon production was originally envisioned as a relatively straightforward process
with which to test fixed-order perturbative calculations and to determine the gluon distribution
[17, 18, 19]. The extensive data on direct photon production [20-24], however, has turned out
to be more complex than was perhaps expected. Presumably for this reason it has inspired
varied theoretical and phenomenological studies [25-37]. Nevertheless, for this benchmark process
important questions remain unresolved. In particular, it has been argued that fixed target data
for direct photon production in the lower pT range (roughly below 5 GeV) are difficult to reconcile
with collinear-factorized NLO cross sections [29, 31]. Additionally, threshold resummation [33,
34, 35] appears to explain the data only for larger pT .

This difficulty has motivated the use of kT -dependent, or unintegrated, parton distributions
combined with recoiling partonic 2 → 2 subprocesses [30]. Information on the partonic transverse
momenta in such distributions may come from resummed perturbation theory [12, 13, 30], and/or
from comparisons to data [11, 29, 38, 39], including Drell-Yan, photon and hadron pair cross
sections. Probably the simplest approach is to assume a Gaussian dependence exp[−k2

T /〈k2
T 〉]

[18]. As we review below, perturbative resummations predict logarithmic pT dependence for the
parameter 〈k2

T 〉. They also imply that 〈k2
T 〉 depends on the parton flavor.

The use of unintegrated distributions requires an extension of collinear factorization [40]. In
particular, a technical challenge in the case of light particle production is the potential for an
artificial infrared singularity when the total transverse momentum of the initial state partons
is comparable to the observed pT [18]. One way to avoid this singularity is to impose strong
ordering in transverse momenta, as in [30], a procedure which requires definition beyond leading
logarithm. A related approach is described detail in Ref. [32], based on a specific implementation
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of kT -resummation. As presented in [32], however, fits in this formalism favor fixed 〈k2
T 〉, with

no indication of the pT -dependence implied by kT resummation. Other studies, however, seem to
imply that 〈k2

T 〉 is S-dependent [29]. In summary, it remains unclear how much of what we inter-
pret as recoil, or parton transverse momentum, is perturbative and how much nonperturbative.
Here we come back to this question in the context of a generalized resummation formalism.

Resummed perturbation theory for 1PI cross sections was extended in [14, 15, 37] using joint
resummation. Joint resummation systematically combines singular behavior at zero transverse
momentum for initial-state partons with that at partonic threshold, where the initial state par-
tonic invariant mass ŝ = xaxbS is just large enough to produce the observed final state. This
method was applied to Z and Higgs production in [41, 42], where no kinematic singularities arise,
because the produced electroweak state is massive and the transverse momentum of the lepton
pair is directly observed. In [41], some implications for the specific forms of power corrections
were also pointed out. Although the joint formalism was applied to high-pT photon production in
[37], its application was hampered by the same infrared singularity mentioned above, associated
with the production of a massless particle. As noted in [37], the complexity of a simultaneous
resummation in transverse momentum and energy above threshold appears to make impractical
a matching of the sort developed for transverse momentum resummation alone in [32].

In this paper, we extend this work, and revisit logarithmic and power corrections to the direct
photon cross section in the joint resummation formalism. Compared to previous work, however,
we use the kinematics of the large-xT limit to reformulate joint resummation, taking into account
recoil effects in the partonic subprocess while avoiding a kinematic singularity. The resulting
resummed cross section reduces to threshold resummation at next-to-leading logarithm (NLL)
and can be matched to finite-order and threshold resummed cross sections in a straightforward
fashion. Beginning at NNLL, the cross section also includes a contribution that can be identified
as the finite residue left from the cancellation of the transverse momentum singularities of real
and virtual gluons radiated in the initial state. Enhancements to the cross section associated
with final state interactions are treated only to leading power in this paper, and appear in the
same manner as in threshold resummation. In another paper we will argue that the results found
here are not changed qualitatively by these effects.

The parameters that control power corrections associated with joint resummation at par-
tonic threshold are found to be related to parameters familiar from the transverse momentum
distributions in electroweak annihilation. The power corrections also inherit significant energy
dependence. For large xT , both perturbative recoil and nonperturbative power corrections to
the predictions of threshold resummation are suppressed by the phase space restrictions built
into joint resummation. This effect is important, however, only for xT near one, or equivalently
for large values of its conjugate Mellin moment variable N . For smaller xT or N of order unity
an analysis based on kT resummation alone may be appropriate, but should be matched to the
results of joint resummation in the large xT region.

We begin Sec. 2 with a brief summary of the joint resummation formula as developed for direct
photon cross sections, and exhibit the kinematic singularity. In the next subsection, the cross
section is expressed as a double inverse transform. This is followed by a simple reformulation
that eliminates the kinematic singularity and reduces the jointly resummed cross section to a
single transform that extends threshold resummation for the direct photon cross section. The
resulting Sudakov exponents of joint resummation are analyzed in Sec. 3, where we identify the
form of the recoil and power corrections to the direct photon cross section that are implied by
joint resummation. We explore the phenomenology of these corrections in Sec. 4, exhibit the
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suppression of power corrections for large S at fixed pT , and briefly discuss possible subdominant
corrections not directly associated with partonic threshold. We conclude with a summary, and
a brief discussion of possible implications for an eventual global treatment of single-photon and
single-hadron cross sections.

2 Self-consistent Recoil in Joint Resummation

2.1 Partonic recoil in direct photon production

Joint resummation [14, 37] is an extension of threshold [16] and transverse momentum resum-
mations [12, 13] that unifies these two formalisms. So far, at the phenomenological level it has
been applied primarily to the single electroweak boson (mass Q) production cross sections at low
transverse momentum, QT ≪ Q [41, 42]. In this case, threshold resummation is associated with
corrections of the form [αs

n/(1−z)] ln2n−1(1−z), with z = Q2/ŝ, where
√

ŝ is the invariant mass
of the partonic pair that annihilates into the observed boson. Such corrections are “implicit”
in the sense that they contribute to the hadronic cross section only after convolution with the
parton distribution functions, and hence give nonlogarithmic, although potentially significant,
contributions to the cross section. Singular corrections in QT , on the other hand, are explicit
in the cross sections themselves, appearing as terms like αs

n/Q2
T ln2n−1(QT /Q) directly for the

measured spectrum.
For single-particle inclusive cross sections such as direct photon production at measured

pT ≫ ΛQCD the situation is slightly different. To leading order in the hard scattering, incoming
partons produce a photon-parton system, which subsequently evolves into a photon-jet pair. At
higher orders in αs, the pair recoils against unobserved soft gluon radiation with total transverse
momentum QT , in much the same way as for a single electroweak boson. When only the photon
is observed, QT is integrated and singularities at QT /pT = 0 cancel, analogously to singularities
at 1 − z = 0 in threshold resummation. Thus in the direct photon cross section at measured
pT , both transverse momentum and threshold singularities are implicit rather than explicit.
Nevertheless, small-QT gluon radiation can play a significant role in the cross section. Applied
to direct photon production, joint resummation attempts to estimate the effects of these soft
emissions systematically [14, 37].

For an observed photon of momentum pT , the photon transverse momentum in the pair
center-of-mass is

p′
T = pT − QT /2 . (1)

In the limit that QT /pT ≪ 1 the cross section is a convolution [37] of the resummed distribution in
QT with a hard-scattering function evaluated at photon momentum p′T . Non-zero pair momentum
QT , if in the direction of the observed photon, decreases the scale of the hard scattering, and
can thus enhance the cross section. As emphasized in Ref. [37], however, when QT grows to the
order of pT , this approximation generates kinematic singularities. Their effect is non-negligible
because the fall-off in soft gluon transverse momenta has a power-like perturbative tail. In [37],
we dealt with the kinematic singularity in a rather crude way by cutting off the resummed QT

spectrum at a convenient scale QT = µ̄:

p3
T

dσres
AB→γX

dpT
=

∫

dQ2d2QT p3
T

dσres
AB→γX

dQ2 d2QT dpT
θ (µ̄ − QT ) , (2)
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where Q is the invariant mass of the photon-parton pair. At threshold, the latter is fixed by

Q = 2pT . (3)

The scale µ̄ in Eq. (2) may be regarded as a matching scale. Ideally, at QT ∼ µ̄ < pT , one
would replace the resummed cross section p3

T dσres
AB→γX/dQ2 d2QT dpT by the fixed-order (NLO)

one, which does not have the kinematic singularity. In practice, this becomes a very complicated
procedure, and it is more convenient to derive a jointly resummed cross section that does not
require a cutoff. We will show below that this may be achieved by applying an additional, self-
consistent approximation that is exact at partonic threshold. To do so, we must recall the explicit
form of the cross section derived in Refs. [14, 37].

2.2 The double inverse transform

Integrated over rapidities, the jointly resummed direct photon cross section is written in terms
of Mellin moments of the MS parton distributions, φ̃a/H(N, µ) ≡

∫ 1

0
dxxN−1 φa/H(x, µ), as

p3
T

dσ
(resum)
AB→γX

dpT
=

∑

ab

p4
T

8πS2

∫

C

dN

2πi
φ̃a/A(N, µ)φ̃b/B(N, µ)

∫ 1

0

dx̃2
T

(

x̃2
T

)N |Mab(x̃
2
T )|2

√

1 − x̃2
T

× Cab→γc(αs(µ), x̃2
T )

∫

d2QT

(2π)2
Θ (µ̄ − QT )

(

S

4p′T
2

)N+1

Pab

(

N, QT ,
2pT

x̃T

, µ

)

, (4)

where µ is the factorization and renormalization scale, and the |Mab|2 are squared amplitudes for
the partonic processes ab → γc. The variable x̃2

T is defined by

x̃2
T ≡ 1

cosh2 η̃
, (5)

where η̃ is the rapidity of the direct photon in the center of mass of the hard scattering. At
partonic threshold, or equivalently large values of the moment variable N , η̃ is forced to unity.
For this reason, we will approximate

2pT /x̃T ∼ 2pT ≡ Q (6)

in the functions Pab in Eq. (4), where dependence on pT is logarithmic. The contour C in Eq. (4)
and the b integral in (7) below define the inverse transforms from N, b space to z and QT . These
contour integrals were described in detail in Refs. [37, 41].

The functions Pab in Eq. (4) were derived in Ref. [37] and provide QT dependence at fixed N .
Each Pab is itself the Fourier transform of the exponentiated logarithmic dependence on N and
b,

Pab (N, QT , Q, µ) =

∫

d2b e−ib·QT exp [Eab→γc (N, b, Q, µ)] , (7)

where the Eab→γc are “Sudakov” exponents that we will specify explicitly below. They can be
split into initial and final state contributions, where, as shown in [37], all b-dependence comes
from the initial state,

Eab→γc(N, b, Q, µ) = EIS
ab(N, b, Q, µ) + EFS

abc(N, Q, µ) . (8)
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The N -independent coefficients Cab→γc contain the effects of hard virtual corrections and are
perturbative series of the form Cab→γc = 1 + αs

π
Cab→γc (1) + . . .. To next-to-leading logarithmic

accuracy one needs the first order terms which may be found in [34], and are given in Appendix
A below. In this paper, we concentrate on the initial state exponent, which contains all leading
logarithmic effects and all b dependence.

Threshold resummation is recovered from Eq. (4) by setting b to zero in the exponents Eab→γc.
In this case, the b integral produces a delta function that sets p′T = pT . Then the exponent
Eab→γc reverts to its threshold resummed form, and S/4p′T

2 → 1/x2
T . Recoil enhances the cross

section Eq. (4) because even for QT ≪ pT , the ratio S/4p′T
2 can be larger than S/4p2

T . For
large enough QT , the factor S/4p′T

2 can diverge, and a cutoff is required, as discussed above.
This momentum configuration, however, requires, QT ∼ 2pT , and hence is far outside the region
where resummation is applicable. This problem is not due to our approximation in the region of
interest, but to our extrapolation beyond that region. When QT approaches pT in magnitude,
the factorization between gluon emission and hard-scattering fails. For large N , however, the
“profile” functions Pab vanish once QT > Q/N ≪ pT . The Pab’s vanish for moderate QT because
the exponents Eab→γc develop large (negative) logarithms once bQ/N > 1 (see below, Eq. (17)).
This ensures that for QT > Q/N the exponential exp[−ib ·QT ] oscillates on a smaller scale than
the size of the region where exp[Eab→γc] is nonvanishing. Put another way, because the widths
of the profile functions in b space are of order N/Q, their Fourier transforms to QT space have
widths of order Q/N . Numerical examples for the QT integrand in Eq. (2) were given in Ref.
[37], which show the fall-off of the profile function for increasing QT , followed by the kinematic
singularity as QT increases to the order of pT . We conclude that for large N the true enhancement
due to recoil is insensitive to modifications of the integrand above QT ∼ pT /N ≪ pT . Since large
N corresponds to xT → 1, we expect a suppression of recoil effects in this limit. In addition,
N is conjugate to k0/pT , where k0 is the energy of initial state radiation [37, 14]. The relation
QT < pT /N is thus equivalent to the restriction that the total transverse momentum of initial
state radiation is less than its energy. We will use this observation shortly.

2.3 Elimination of the kinematic singularity

Given that all-order recoil effects enhance the jointly resummed cross section from values of
QT such that QT < pT /N , it is only in this region that we are required to maintain accurate
expressions for leading QT behavior (that is, 1/Q2

T times logarithms). In fact, to construct the
jointly resummed expression in Eq. (4), we have neglected corrections that are nonsingular at
QT = 0 and 1 − z = 0. This means that we do not in general have control over corrections
suppressed by powers of QT /pT , and also that we are free to change the resummed expression
at this level of accuracy. Such a change will only affect the result from the region of QT beyond
the range that gives enhancement. These modifications will not produce logarithms, and we can
adjust for them by matching to the cross section at fixed order.

In summary, we are free to choose an extrapolation that does not produce spurious singu-
larities at large QT and which does not change the singularity structure at QT = 0. This may
be done in such a way that the resulting resummed expression remains accurate to NLL in the
variables N and b.

In this spirit, we make the following approximation, accurate to corrections that are sup-
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pressed by factors of QT /pT :

(

S

4(~pT − 1
2
~QT )2

)N+1

=
(

x2
T

)−N−1
exp

{

(N + 1) ~QT · ~pT /p2
T

[

1 + O
(

NQ2
T

p2
T

)]}

. (9)

Notice that the exponent reaches order unity at just those values of QT for which the profile func-
tion begins to decrease. Replacing the singular power dependence on QT with the exponential,
we retain the leading behavior at low QT , but eliminate the kinematic singularity, as desired.
Again we emphasize that suppression for QT > pT /N is a reflection of energy conservation.

Let us now study the effect of the approximation in Eq. (9). Consider for the moment
N + 1 = −iN with N fixed and real. Using Eq. (7), we may then replace the second line of
Eq. (4) according to

Cab→γc

∫

d2QT

(2π)2
Θ (µ̄ − QT )

(

S

4p′T
2

)N+1

Pab

(

N, QT ,
2pT

x̃T

, µ

)

−→ Cab→γc
(

x2
T

)−N−1
∫

d2b exp [Eab→γc (N, b, Q, µ)]

∫

d2QT

(2π)2
e−iN ~QT ·~pT /p2

T−i~b· ~QT .

(10)

Here we have extended the QT integral to infinity. The integral may then be performed, and gives

δ(2)
(

~b + N ~pT/p2
T

)

. Using this delta function to perform the b integral in (10), and inserting the

result back into Eq. (4), we find

p3
T

dσ
(resum)
AB→γX

dpT
=

∑

ab

p4
T

8πS2

∫

C

dN

2πi
φ̃a/A(N, µ)φ̃b/B(N, µ)

∫ 1

0

dx̃2
T

(

x̃2
T

)N |Mab(x̃
2
T )|2

√

1 − x̃2
T

×Cab→γc
(

x2
T

)−N−1
exp

[

Eab→γc

(

N,−i
N + 1

pT
, Q, µ

)]

. (11)

This expression for the direct photon cross section is similar to the result for pure threshold
resummation, except for the additional b dependence, which has become dependence on the
combination (N + 1)/pT in the exponent. Although we have derived this form for imaginary
values of N + 1, it can be analytically continued to any N , and we use (11) as the result of
the QT integral in the high-xT jointly resummed cross section. Recoil is self-consistently taken
into account through the exponential in (9), which is accurate up to power corrections as shown.
There are no kinematic singularities at large QT . For QT competitive with pT , of course, the
approximations we have made fail, but in this region the profile function is small.

2.4 Matching

Matching is now straightforward for the stabilized cross section, Eq. (11), and can be handled
as for the threshold-resummed cross section. We simply expand the exponents to NLO (for
example) in terms of αs(pT ), and replace these approximate expressions with the exact hard
scattering cross sections at that order.

We emphasize that within our new treatment we have been able to perform both the QT

and the b integrals. This is a great advantage for phenomenological applications, since now
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the evaluation of the cross section is technically equivalent to that of a standard threshold-
resummed one. In fact, as we show below, Eq. (11) is identical to normal threshold resummation
to NLL, but differs at NNLL through a well-defined set of terms that can be identified uniquely
as recoil effects. The fact that the NLL threshold logarithms are unchanged by recoil is an
important consistency check of our approach because these logarithms are uniquely specified in
the perturbative single-inclusive cross section.

The final resummed cross section thus has a form that is closely related to matched threshold
resummation [41]:

p3
T

dσres
AB

dpT
=

∑

ab

∫

C

dN

2πi
σ̃

(0)
ab (N) Cab→γc

(

x2
T

)−N−1
e
Eab→γc

(

N,−i N+1

pT
,Q,µ

)

+ p3
T

dσAB

dpT

NLO

− p3
T

dσAB

dpT

res|
α2
s

, (12)

where σ
(0)
ab (N) is the moment of the lowest-order cross section,

σ̃
(0)
ab (N) =

p4
T

8πS2
φ̃a/A(N, µ)φ̃b/B(N, µ)

∫ 1

0

dx̃2
T

(

x̃2
T

)N |Mab(x̃
2
T )|2

√

1 − x̃2
T

, (13)

and where the final terms in (12) express our matching to the fixed order (NLO, O(α2
s)) cross

section p3
T

dσAB

dpT

NLO
by taking out the O(α2

s) expansion of the perturbative part of the resummed

cross section, p3
T

dσAB

dpT

res|
α2
s .

3 Perturbative and Nonperturbative Exponents

3.1 Resummed perturbative recoil

To clarify the relationship between joint and threshold resummation and the implications of our
new treatment of recoil, we review the N and b dependence of the resummed exponent at NLL
found in [14]. To all orders, the NLL initial-state logarithms in N and b are generated from an
integral, derived using the eikonal nature of soft gluon emission, that extends down to zero scale
in the running coupling. It may be written in a convenient form as

EIS
ab(N, b, Q, µ = Q) (14)

=

∫ Q2

0

dk2
T

k2
T

∑

i=a,b

Ai (αs(kT ))

[

J0 (bkT ) K0

(

2NkT

Q

)

+ ln

(

N̄kT

Q

)]

,

where Q ≡ 2pT (see Eq. (3)) is the minimal center of mass energy of the partonic subprocess.
Here and below, we define

N̄ = NeγE . (15)

The anomalous dimensions Aa(αs) have the familiar expansion Aa(αs) =
∑

n (αs/π)n A
(n)
a , with

A(1)
a = Ca

A(2)
a =

1

2
CaK ≡ 1

2
Ca

[

CA

(

67

18
− π2

6

)

− 10

9
TRNf

]

, (16)
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where Cq = CF for quarks and Cg = CA for gluons. The presence of the Bessel function
K0(2NkT /Q) reflects the conservation of energy that must be imposed to resum threshold and
kT enhancements simultaneously. For the analogous exponent in kT resummation, the function
K0(2NkT /Q) in Eq. (14) is replaced by − ln(kT/Q) and ln(N̄kT/Q) by ln(kT /Q), and the kT

integral produces logarithms of bQ for any b > 1/Q. In joint resummation, however, b must be
greater than N/Q to produce logarithms. As a result, for N → ∞ the profile function in QT

space decreases once QT > Q/N , as discussed in Sec. 2.2 above.
Starting from Eq. (14) we isolate the effect of perturbative recoil by separating it from the

corresponding exponent for threshold resummation. Since threshold resummation is already ac-
curate to NLL in the transform variable N [14], for consistency recoil must appear first at the
next logarithmic order, and it does. As we shall see, however, its influence on the 1PI cross
section need not be negligible in perturbation theory. In addition, the integral over the anoma-
lous dimension A(αs(kT )) through the infrared region suggests a specific set of nonperturbative
corrections, whose effects we will also study. For initial-state radiation, the form of contributions
beyond NLL accuracy is given in [14]. Threshold logarithms associated with final-state interac-
tions beyond NLL will be the subject of a separate investigation. We will argue that they respect
the pattern for power corrections found here.

As directed by Eq. (11), we now set b = −i(N +1)/pT in Eq. (14), noting the Bessel function
relation J0(iz) = I0(z). We then reorganize the equation as

EIS
ab(N, b = −i

N + 1

pT
, Q, µ = Q)

=

∫ 4p2
T

0

dk2
T

k2
T

∑

i=a,b

Ai (αs(kT ))

[

K0

(

NkT

pT

)

+ ln

(

N̄kT

2pT

)]

+

∫ 4p2
T

0

dk2
T

k2
T

∑

i=a,b

Ai (αs(kT ))

[

I0

(

(N + 1)kT

pT

)

− 1

]

K0

(

NkT

pT

)

≡ EIS
ab, thr(N, pT ) + δ Eab, rec(N, pT ) , (17)

where we have again used Q = 2pT . We have identified the first term on the right-hand-side of
Eq. (17) with the exponent for threshold resummation for initial-state logarithmic behavior in
N [14].

The second term on the right side of (17) is the recoil correction. It now amounts simply
to an N -dependent correction to the threshold-resummed cross section. As required by the
self-consistency of NLL threshold resummation, this expression is free of NLL logarithms in N ,
because for small arguments z,

I0(z) ∼ 1 +
z2

4
, K0(z) ∼ − ln

[

zeγE

2

] (

1 +
z2

4

)

+
z2

4
. (18)

On the other hand, as z ≡ NkT /pT becomes large with Re(z) > 0, I0(z) increases as ez/
√

2πz,
while K0(z) decreases as e−z/

√

(2z/π), so that

I0(z)K0(z) → 1

2z
(Re(z) > 0) . (19)

At fixed coupling, and replacing N + 1 by N in I0 in Eq. (17), the net result is a convergent,
N -independent integral, equal to (Ca + Cb) × (αs/2π) ζ(2), a modest but still significant contri-
bution in the exponent.
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For large values of N , we can readily estimate the effect of the running coupling to perturbative
recoil, by noting that the combination (I0 −1)K0 becomes sharply peaked near kT = pT /N , with
a width that is asymptotically negligible compared to the scale on which the coupling runs. As
a result, to NNLL, we may isolate perturbative recoil including the running of the coupling by
the expression,

δ ENNLL
ab, rec = (Ca + Cb)

αs(4p
2
T /N̄2)

2π
ζ(2) . (20)

We will use this expression below to estimate the effects of perturbative recoil.

3.2 Nonperturbative corrections from threshold

The recoil exponent δ Eab, rec(N, pT ) in Eq. (17) provides an estimate of perturbative recoil, and
is also a guide to nonperturbative power corrections. The most basic observation about these
corrections is that they factorize and exponentiate, in much the same manner as for event shapes
in e+e− annihilation and for the transverse momentum distributions of electroweak boson pro-
duction. This follows from the form of the resummed exponent, in which the entire dependence
on the running coupling is through a single, integrated scale, kT . We emphasize that a similar
result holds for the full eikonal exponent to all logarithmic order. Indeed, the same underlying
nonperturbative parameters that appear in Drell-Yan cross sections will appear in power cor-
rections to direct photon cross sections. As noted in [41], power corrections from threshold and
transverse momentum resummations are separately additive in the exponent. As we shall see,
this leads to an extra power correction compared to estimates based on transverse momentum
resummations alone [12, 13].

Using the additivity of the nonperturbative corrections, we write for the full exponent

Eab→γc(N, pT ) = EPT
abc + δ Enp

ab ,

EPT
abc = EPT

abc,thr + δ ENNLL
ab, rec , (21)

where δ Enp
ab accounts for nonperturbative contributions from low scales in kT , of order ΛQCD. The

full perturbative threshold exponent at NLL, EPT
abc,thr, with initial- and final-state contributions,

was derived in [34, 35, 36, 43]. As noted above, in this study we derive nonperturbative and
recoil corrections associated with initial-state radiation only.

For small to moderate values of N , the integral in EIS
ab(N, pT ) is perturbatively dominated.

Nonperturbative corrections are generated by treating NkT /pT as a small parameter in both the
threshold and recoil exponents of Eq. (17). Expanding the integrands of both δ Eab, rec(N, pT )
and EIS

ab, thr in Eq. (17) for small k2
T , we parameterize the resulting 1/p2

T terms as

δ Enp
ab =

(N + 1)2 + N2

4p2
T

∑

i=a,b

[

λ1,1
i + λ1,0

i ln

(

2pT

κN̄

)]

+
N2

4p2
T

∑

i=a,b

λ1,0
i (Nκ/pT < 1) , (22)

where the N2 terms come from the threshold (K0) integral in Eq. (17), while the (N + 1)2

term is from the recoil (I0) term. The logarithm in both cases arises from the expansion of the
function K0(2NkT /pT ), and, as noted above, its presence can be traced to the imposition of
energy conservation in joint resummation. The constants λm,n

i in Eq. (22) are interpreted as the
nonperturbative content of moments of the running coupling [3, 4, 5], with indices in a notation
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inspired by [4]. More specifically, these are moments of the anomalous dimensions Aa (αs(kT )),
[6]

λm,n
a =

∫ κ2

0

dk2
T

(

k2
T

)m−1
Aa (αs(kT )) lnn

(

kT

κ

)

=
Ca

π

∫ κ2

0

dk2
T

(

k2
T

)m−1
αs(kT ) lnn

(

kT

κ

)

+ . . . . (23)

In Eq. (23), the upper limit κ for the k2
T integral, which also appears as the scale in logarithms of

pT in Eq. (22), is a factorization scale. To isolate a truly nonperturbative coupling, as in Ref. [4],
we could subtract perturbative contributions to the λ’s to the order corresponding to our level of
resummation. Since this process does not change the pT and N dependence of the expressions,
and because the nonperturbative parameters appear in the same manner here as in electroweak
annihilation [12], it is not necessary to provide such an analysis for our purposes.

As in the case of electroweak bosons [10, 11, 44], and in contrast to event shapes [2, 3, 5, 7],
only even powers result from the expansion of the Bessel functions in (17), the first of which has
been displayed in Eq. (22). For N not too large, that is, for NΛQCD ≪ pT we expect only one or
two power corrections to be significant, but for larger N , the resummed cross section should be
supplemented by a function with a more general N -dependence [6, 7]. In the following section,
we will study the phenomenological implications of such dependence.

3.3 The full exponent

Summarizing our results so far, the full exponent is the sum of a perturbative threshold exponent,
perturbative recoil and nonperturbative corrections,

Eab→γc

(

N, i
N + 1

pT
, Q, µ

)

= EPT
abc,thr(N, pT ) + δ ENNLL

ab, rec (N, pT ) + δ Enp
ab , (24)

where the nonperturbative exponent δEnp
ab is given in (22) above and the NNLL recoil correction

δ ENNLL
ab, rec by (20). Eab, thr(N, pT ) is the full exponent for threshold resummation in prompt-photon

production, including initial and final state contributions [34, 35, 36, 43] (see Appendix A).

4 Phenomenology of Power Corrections

The expressions derived above provide useful information on the phenomenology of power cor-
rections associated with soft gluon emission. First, pT dependence enters through even powers,
with a leading nonperturbative coefficient that is identical to that encountered as the coefficient
of b2 in electroweak annihilation. For comparison, the latter may be written in terms of the same
parameters λm,n

q as

δ Enp
qq̄ (Drell − Yan) = −b2

4

∑

i=q,q̄

[

λ1,1
i + λ1,0

i ln

(

Q

κ

)]

. (25)

In contrast, for the single-particle inclusive cross section in joint resummation the nonperturbative
corrections in Eq. (22) possess highly nontrivial N -dependence, from recoil directly, as well as
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from threshold resummation. This implies that these power corrections inherit nontrivial energy
dependence, and we may expect their effects to change with the overall energy.

To see the qualitative energy-dependence implied by the nonperturbative exponents derived
above, we note that the Mellin moment N and the variable ln x2

T are in a conjugate relationship,
exhibited in the inverse transform (12),

N ↔ 1

ln x2
T

. (26)

Identifying these quantities in the nonperturbative power correction of Eq. (22), and recalling
that xT = 2pT /

√
S, we immediately see that the nonperturbative exponent is suppressed not

only by a power of pT , but also by a power of ln S at fixed pT ,

δ Enp
ab ↔ λ1,0

a + λ1,0
b

4p2
T ln2

(

4p2
T

S

) ln

[

2pT ln

(

4p2
T

S

)]

. (27)

Even though this expression is eventually to be convoluted with the hard scattering cross sections
and the parton distributions, we may conclude that at fixed pT , the importance of power correc-
tions will decrease as

√
S increases. At the same time, as xT approaches unity, the coefficient

of 1/p2
T diverges, and the nominal power correction may dominate at the edge of phase space.

Even as this coefficient diverges, however, the logarithm in the numerator eventually changes
sign, so that for xT close enough to unity the enhancement becomes a suppression. This is not
an accident, because the presence of the factor of N in the logarithm reflects energy conservation,
which is respected by joint resummation. To give a realistic estimate of the behavior of these
nonperturbative corrections, we return to moment space.

For the dominant form of the nonperturbative exponent at moderate N and pT , we are guided
by Eq. (22). For larger N , however, all power corrections in N may become relevant. To account
for this, we introduce a function of N/pT that generalizes this expression. We will refer to this as
a shape function by analogy to the discussion of [6]. We tailor the N -dependence to the behavior
of the Bessel functions of Eq. (17) for large and small values of their arguments, which both
depend on the combination N/pT . Matching to the small-N behavior of the Bessel functions in
(18) and to the large-N behavior in (19), we modify Eq. (22),

δEnp
ab = µ0

Ca + Cb

π

(N + 1)2 + N2

4p2
T

ln
(

1 + 2pT

N̄Q0

)

(

1 + Q0N
pT

)2 . (28)

Here the scale µ0 is a parameter of dimension mass squared, which can be thought of as the
integral of Aa(αs(kT ))(π/Ca) over k2

T with unit weight in (23). The overall factors of color
charges in Eq. (28) reflect the proportionality of the coefficients Aa to Ca. The parameter Q0 is
a scale whose value accounts for non-logarithmic terms. If λ1,1 = 0 in (23), we may identify Q0

with the scale κ in Eq. (23). This is the result found in Ref. [4] with κ = 2 GeV.
To estimate the impact of these nonperturbative corrections for large xT , we are aided by our

experience with electroweak boson production and with perturbative resummation. As can be
seen from Eq. (23), the nonperturbative parameters in our approach are related to moments of the
strong coupling, which suggests some form of universality for them. In a study of Z production
at the Tevatron we estimated nonperturbative effects; the value obtained may be translated into
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[(λ1,0
q + λ1,0

q̄ )/4] ln(mZ/κ) ≈ 0.8 GeV2 in Eq. (28), or λ1,0
q ∼ λ1,0

q̄ ∼ 0.4 GeV2, consistent with the
result quoted in [4] for κ = 2 GeV. This implies for the parameter µ0 in (28),

µ0 (Drell − Yan) =
πλ1,0

q

CF
∼ 1 GeV2 . (29)

The nonperturbative exponent δEnp
ab in Eq. (28) with this value of µ0 is our best estimate of the

N -dependent exponent at large N . Substituted into the full exponent (24) it provides a measure
of power corrections at large xT .

To illustrate the influence of these power corrections, we compute the ratio of the cross
section with threshold resummation plus the nonperturbative term (28) to the cross section
with threshold resummation alone. We do this for several cases that are directly relevant for
comparison with experiments: for p Be scattering with fixed-target beam energies E = 530 GeV
and E = 800 GeV (E706 [22]), for pp and p̄p scattering with beam energy E = 315 GeV
(UA6 [21]), and for pp scattering at

√
s = 63 GeV (R806 [46]). We use the GRV set of parton

distributions from Ref. [45]. We normalize all our results to the threshold resummed cross section,
i.e., Eq. (12) with δ ENNLL

recoil = δ Enp = 0. This is advantageous because the dependence on the
factorization and renormalization scales is small in this cross section, and because our recoil and
nonperturbative corrections have been defined relatively to it. Note that as implied by Eq. (4)
our resummation is done for the cross section integrated over all photon rapidities. In principle,
we should account for the finite ranges of rapidity covered in the various experiments, which
could be done using the techniques developed in Ref. [36]. However, as implied by the results
of [36], the dependence on rapidity will be very weak in the ratios we consider here and can be
neglected for simplicity. Our results are always matched to the NLO cross section as described
after Eq. (12). We do not take into account a photon fragmentation contribution to the cross
section.

Shown in Fig. 1 are results for the energies discussed above, as functions of xT . The en-
hancements exhibited in the figure are both small and for the most part relatively flat. We have
included values of xT far from unity, especially for R806, to illustrate the point that these power
corrections decrease with energy. For RHIC and CDF energies, the effects of (28) are practically
negligible, of the order of just a few tenths of a percent. We emphasize, however, that this result
applies only to extrapolations to small xT of the expressions derived for xT → 1, and is not
necessarily representative of the true behavior of the cross section at low xT .

The moderation of the xT dependence of the cross section at large xT in Fig. 1 associated
with energy conservation is illustrated by comparison to Fig. 2, which shows the analogous ratios
when the nonperturbative coefficient is allowed to reflect the b2 ↔ (N + 1)2/p2

T dependence that
is characteristic of kT resummation, starting from Eq. (25), rather than (28). The shape function
then has the same overall quadratic N -dependence as (28), but lacks the N -dependence in the
logarithm and the denominator that reflects the influence of the K0 function in (17). We thus
have

δEnp
ab = µ0

Ca + Cb

π

(N + 1)2

4p2
T

ln

(

2pT

κ

)

(Fig. 2) . (30)

Relative to Fig. (1), these curves show both strong enhancements and marked upturns toward
increasing xT .

To complete this discussion, we consider two additional variations of the cross sections com-
puted with Eq. (28). So far, we have ignored the term in (24) associated with perturbative recoil,
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Figure 1: Ratios of direct photon cross sections computed with threshold resummation and
nonperturbative shape function (28) to cross sections with threshold resummation only. The
curves are given as functions of xT for kinematics relevant for comparison to fixed-target and
ISR experiments (see text).

Eq. (20). It is probable that the incorporation of recoil at NNLL would affect the values of the
nonperturbative exponents. Indeed, since both NNLL recoil and power corrections are derived
from the same starting expression, Eq. (14), there is a serious potential for double counting. On
the one hand, for small values of NQ0/pT the recoil integral in Eq. (14) is dominated by kT that
are outside the soft region kT ≤ Q0. On the other hand, once N ≥ pT /Q0, the integration region
that gives rise to the result (20) overlaps the power corrections almost entirely. Nevertheless, it
is interesting to test the influence of the corrections suggested by Eq. (20). To correct for double
counting, at least partially, we use a modified estimate for recoil, which has the property that
for small N it approaches (20), while it vanishes for large NQ0/pT ,

δĒSUB
ab, rec = (Ca + Cb)

αs(4p
2
T /N̄2)

π

ζ(2)

2



 1 − 2

ζ(2)

(

NQ0

2pT

)2 ln
(

1 + e1/2−γE 2pT

NQ0

)

1 + e1/2−γE
NQ0

ζ(2)pT



 . (31)

For N fixed, this is a leading power contribution, with power-suppressed corrections, which,
however, conspire to cancel the leading term when NQ0/pT ≫ 1. Figure 3 shows the same sets
of ratios as in Fig. 1, including now δĒSUB

ab, rec in addition to δEnp
ab , Eq. (28). To avoid double

counting with the Cab→γc coeffcients in the cross section, Eq. (11), we subtract the leading term
(Ca + Cb)αs(4p

2
T )ζ(2)/2π from the latter. We see a substantial increase compared to the pure

power corrections, in addition to a moderate slope toward large xT . We do not take the level of
this enhancement too literally, given our rough treatment of double-counting, but conclude that
it does demonstrate the possible importance of nonleading logarithms and their interplay with
the magnitudes of the parameters of power corrections.
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Figure 2: Same as Fig. 1, but for the kT -inspired nonperturbative shape function (30).

Finally, we illustrate the possible influence of terms that are nonleading by a power in N .
Although we have derived Eq. (11) only for xT → 1, the form is sufficiently general that it can
be extrapolated to any value of xT . Clearly, as we leave the kinematic regions where large N
dominates, terms that are nonleading by powers are expected to become more and more impor-
tant. Indeed, nonleading terms may be generated from the low-scale limit of partonic evolution.
Thinking of the pervasive upturn of experimental cross sections relative to NLO noted long ago
[25], we assume a phenomenological parameterization for the N -dependent nonperturbative ex-
ponents that behaves as N/p2

T for large N , is related to the splitting functions, and enhances
the cross section at low xT . The simplest ansatz of this sort is the following modification of the
quark-gluon exponent (only),

δĒ(gq)
np = δĒ(gq̄)

np = δE(gq)
np + µ1

CA

4π

(N + 1)2

p2
T

1

N − 1
,

δĒ(qq̄)
np = δE(qq̄)

np . (32)

The parameter µ1 is defined by analogy to µ0 in (28) and (22), but does not have a direct or
indirect interpretation in terms of resummed perturbation theory. In Fig. 4 we show the same
ratios, but now computed with the modified shape functions (32), choosing µ1 = µ0 = 1 GeV2.
These ratios indeed show a noticeable upturn toward small xT . We observe, however, that the
magnitudes of the enhancements are nowhere near those necessary to describe the low-xT direct
photon data, especially of E706 [22]. Since we are now considering terms that are subleading at
large N , we also make exploratory calculations at higher energies, relevant to comparisons with
the collider experiments at Tevatron (

√
s = 1800 GeV) and RHIC (

√
s = 200 GeV). As one can

see, rather sharp upturns at pT . 5 GeV are a distinct possibility here, if our ansatz in Eq. (32)
is realistic. We finally note, without claims of physics significance, that it is possible to provide a
qualitatively successful (χ2 per degree of freedom approximately 1.5) “global” fit of direct photon
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Figure 3: Same as Fig. 1, but including the subtracted NNLL recoil exponent (31).

data from E706, UA6, R806, and even CDF, with the ansatz (32), but only for values of µ1 in the
range of 10 GeV2, which implies µ1CA/4π ∼ 2 GeV2. The origin of such a large scale, occuring
as roughly 2 GeV2/p2

T , is at the least not obvious. On the other hand, it could be simply an
artifact of using Eq. (11) outside the region where the exponent E(N, b) in (17), evaluated at
b = −i(N + 1)/pT , has a straightforward interpretation. Even more serious, however, are the
potential consequences of such corrections for pion production at collider energies. These issues
can only be clarified by further work.

5 Conclusions

We have presented an analysis of recoil and power corrections from initial state radiation in single
inclusive direct photon cross sections at large xT . In this limit, we resum logarithmic corrections
in N and simultaneously control logarithmic and power corrections in NQT /pT , where QT is a
measure of partonic transverse momentum. Our new treatment avoids any kinematic singularity
when QT is large. The resulting expression is equivalent to threshold resummation at NLL in
perturbation theory, with NNLL recoil effects. We have also shown that we may exponentiate
power corrections of the form NQT /pT .

In the large xT region, leading power corrections enter in moment space as powers of (N/pT )2,
with the leading term multiplied by a logarithm of the form ln(pT /NQ0). We have observed that
at large xT power corrections are suppressed relative to expectations based on kT resummation
alone. This suppression is attributable to phase space restrictions on initial state radiation near
partonic threshold. This result raises the possibility of a link between a matched kT resummation
similar to that of Ref. [32], at relatively low xT , and a joint resummation at large xT . We
have presented our analysis for initial state radiation, which includes all kT dependence in joint
resummation. A detailed discusssion including the role of final state radiation will be given
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Figure 4: Same as Fig. 1, but for a nonperturbative function with terms nonleading in N as
given by Eq. (32). We also show results at

√
s = 1800 GeV and

√
s = 200 GeV, relevant for

comparisons with Tevatron and RHIC data.

elsewhere.
Looking beyond direct photon production, we anticipate that similar analyses may shed light

on single hadron and jet production. A simple, but possibly significant observation is that in single
hadron cross sections, the relevant scale for power corrections associated with partonic threshold
and transverse momentum is ŝ, the total partonic c.m. energy squared. Because ŝ ≥ z−2(4p2

T ),
with z the momentum fraction associated with fragmentation, nonperturbative effects that are
inverse powers of ŝ are suppressed by factors of z2 when expressed in terms of p2

T . Issues such as
these will be relevant to an effort to tie together perturbative and nonperturbative effects in the
full range of inclusive hadronic reactions.
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Appendix

In this appendix we provide the explicit forms of the exponents Eab→γc, as given in [34]. Ac-
cording to Eq. (8) the exponent is split up into pieces associated with initial and final state
contributions. According to Eq. (17), within our treatment of recoil, the initial-state exponent
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becomes EIS
ab, thr(N, pT ) + Eab, rec(N, pT ). One has

EIS
ab, thr(N, pT ) =

∑

i=a,b

[

1

αs(µ2)
h

(0)
i (λ) + h

(1)
i (λ, 2pT , µ, µF )

]

, (33)

where

h
(0)
i (λ) =

A
(1)
i

2πb2
0

[2λ + (1 − 2λ) ln(1 − 2λ)] , (34)

and

h
(1)
i (λ, 2pT , µ, µF ) =

A
(1)
i b1

2πb3
0

[

1

2
ln2(1 − 2λ) + 2λ + ln(1 − 2λ)

]

(35)

+
1

2πb0

(

−A
(2)
i

πb0

+ A
(1)
i ln

(

4p2
T

µ2

)

)

[2λ + ln(1 − 2λ)] − A
(1)
i

πb0

λ ln

(

4p2
T

µ2
F

)

.

For completeness, we have distinguished between the renormalization scale µ and the factorization
scale µF . The A

(1)
i are as in Eq. (16), and we have defined

λ = b0αs(µ
2) ln N̄ ,

b0 =
11CA − 4TRNF

12π
,

b1 =
17C2

A − 10CATRNF − 6CFTRNF

24π2
. (36)

For the NNLL exponent Eab, rec(N, pT ) we obtain

ENNLL
ab, rec = (Ca + Cb)

αs(µ
2)

2π(1 − 2λ)
ζ(2) . (37)

The exponent for the final state reads:

EFS
abc(N, 2pT , µ) =

1

αs(µ2)
f (0)

c (λ) + f (1)
c (λ, 2pT , µ) + g

(1)
abc(λ) , (38)

with

f (0)
a (λ) = 2h(0)

a (λ/2) − h(0)
a (λ) , (39)

f (1)
a (λ, 2pT , µ) = 2h(1)

a (λ/2, 2pT , µ, 2pT ) − h(1)
a (λ, 2pT , µ, 2pT )

+
A

(1)
a ln 2

πb0
(ln(1 − 2λ) − ln(1 − λ)) − B

(1)
a

πb0
ln(1 − λ) , (40)

g
(1)
qq̄g(λ) = −CA

πb0
ln(1 − 2λ) ln 2 , (41)

g(1)
qgq(λ) = −CF

πb0
ln(1 − 2λ) ln 2 . (42)

Here,

B(1)
q =

3

4
CF , B(1)

g =
β0

4
. (43)
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Finally, the coefficients Cab→γc of Eq. (4) read [34]:

Cqq̄→γg = 1 +
αs

π

[

− 1

2
(2CF − CA) ln 2 +

1

2
K − Kq + 2ζ(2)

(

2CF − 1

2
CA

)

+
5

4
(2CF − CA) ln2 2 +

3

2
CF ln

2p2
T

µ2
F

− πb0 ln
2p2

T

µ2

]

, (44)

Cqg→γq = 1 +
αs

π

[

− 1

10
(CF − 2CA) ln 2 − 1

2
Kq +

ζ(2)

10

(

2CF + 19CA

)

+
1

2
CF ln2 2

+
(3

4
CF + πb0

)

ln
2p2

T

µ2
F

− πb0 ln
2p2

T

µ2

]

, (45)

where

K = CA

(

67

18
− π2

6

)

− 10

9
TRNf ,

Kq =

(

7

2
− π2

6

)

CF . (46)
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